ORBITS IN A NON-KERR DYNAMICAL SYSTEM
نویسندگان
چکیده
منابع مشابه
CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملcontrol of chaos in a driven non linear dynamical system
we present a numerical study of a one-dimensional version of the burridge-knopoff model [16] of n-site chain of spring-blocks with stick-slip dynamics. our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. it is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملPeriodic Orbits of a Dynamical System Related to a Knot
Following [SW2] we consider a knot group G, its commutator subgroup K = [G,G], a finite group Σ and the space Hom(K,Σ) of all representations ρ : K → Σ, endowed with the weak topology. We choose a meridian x ∈ G of the knot and consider the homeomorphism σx of Hom(K,Σ) onto itself: σxρ(a) = ρ(xax) ∀a ∈ K, ρ ∈ Hom(K,Σ). As proven in [SW1], the dynamical system (Hom(K,Σ), σx) is a shift of finite...
متن کاملAutoparallel Orbits in Kerr Brans-Dicke Spacetimes
The bounded orbital motion of a massive spinless test particle in the background of a Kerr Brans-Dicke geometry is analysed in terms of worldlines that are auto-parallels of different metric compatible spacetime connections. In one case the connection is that of Levi-Civita with zero-torsion. In the second case the connection has torsion determined by the gradient of the Brans-Dicke background ...
متن کاملstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Bifurcation and Chaos
سال: 2011
ISSN: 0218-1274,1793-6551
DOI: 10.1142/s0218127411029768